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SUMMARY 
An approximate method is presented here for estimating the hydrodynamic second-order drift forces on 
a pair of bottom-mounted, surface-piercing circular cylinders in water of arbitrary uniform depth. The 
theoretical results are based upon the large-spacing approximation. Results are presented to illustrate the 
influence of the various wave and structural parameters on the hydrodynamic forces on each of the cylinders. 
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INTRODUCTION 

The problem of hydrodynamic interactions within a group of large multicomponent offshore 
structures subjected to ocean waves has been worked on by various research groups over the last 
few years. From practical considerations it is extremely important to be able to predict the wave 
loads on multicolumn structures in waves. When many offshore structures are placed together in 
a configuration, the hydrodynamic loads on individual components may be significantly different 
from the loading they would each experience in isolation. This is simply because of the 
hydrodynamic coupling between the bodies. 

As early as in 1977, Budal' studied the wave energy absorption for the three-dimensional case, 
considering linear arrays or rows of equidistant structures. The theoretical aspects of the more 
general case of wave power absorption by an array of equispaced equal groups of oscillating 
structures were considered by Falnes.' Ohkusu3 used the method of multiple scattering in which 
the scattered potential is determined from each scattering event within the cylinder group. Spring 
and Monkmeyer4 adopted a similar approach to evaluate the first-order wave forces on a closely 
spaced group of vertical cylinders. A series solution was obtained, the coefficients of which were 
determined from a set of matrix equations. Results were given for two cylinders in various 
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configurations relative to the incident wave angles. Chakrabarti’ later used the same method for 
the derivation of the velocity potential for any number of cylinders in the presence of linear waves. 

Simon6 proposed an approximate theory for computing wave forces on an array of wave 
energy devices. According to this theory, a diverging wave scattering from one cylinder is replaced 
by a plane wave of appropriate amplitude in the vicinity of another cylinder. Once the amplitude 
and phase of the equivalent plane wave have been determined, the problem reduces to summing 
the effects of the plane waves on any given cylinder. The effect of this equivalent plane wave on the 
given cylinder is then computed. The solution inherently assumes that the spacing between two 
cylinders is fairly large relative to the incident wavelength. More recently, McIver and Evans’ 
formulated a new matrix method based upon the idea of Simon6 for the linear multicylinder 
problem. In this method the efficiency is improved by approximating the effect on one cylinder of 
scattered waves from other cylinders as that of plane incident waves. Their numerical solution for 
three cylinders gives good results even when the cylinders are close to one another. 

The previous analysis for multiple scattering in arrays is restricted to the linearized (small- 
amplitude) wave theory only. However, the hydrodynamic interactions caused by non-linear 
(finite amplitude) wave theory are not well understood and to our knowledge have not been 
reported in the literature. Most of the previous investigations in this area have been directed 
towards extending the linear theory of MacCamy and Fuchs’ for an isolated, bottom-mounted, 
surface-piercing cylindrical pile to include second-order terms in the analysis.’-’ Recently, 
Masuda et a!.’ 3, l4 have presented a numerical technique to calculate the second-order diffraction 
loads on arrays of vertical cylinders of arbitrary cross-sections. The method requires a numerical 
integration over the entire mean fluid free surface and this is computationally very expensive. 

In the present paper a method is formulated to estimate the hydrodynamic forces to second 
order on a pair of bottom-mounted, surface-piercing cylinders in water of arbitrary uniform 
depth. The second-order drift forces are calculated using an extension of Lighthill’s method’ for 
finite water depth. The first-order potentials on each cylinder are now adjusted to take into 
account hydrodynamic interference effects. In Lighthill’s technique the explicit calculation of the 
second-order potential is not required. Theoretical results are presented which illustrate the 
influence of the relative spacing between the cylinders, the radius of the cylinders and the incident 
wave frequency on the hydrodynamic loads to second order. 

MATHEMATICAL FORMULATION 

In this paper we consider two right circular cylinders of radius a separated by a distance s. We 
assume that these cylinders extend from the ocean bed to the free surface as shown in Figure 1. 
A fixed co-ordinate system Oxyz is employed with the x- and y-axes in the horizontal plane and 
the z-axis pointing vertically upwards from an origin on the free surface. The centres of the two 
cylinders, O1 and O,, lie on Oy. The water depth is h. Long-crested sinusoidal waves of frequency 
u and amplitude A propagate in the positive x-direction. 

The linear velocity potential 0 may be written 

@ = Re( 4eiu’), (1) 
where Re stands for the real part of ( ). The fluid velocities q = VO. The potential 4 is conveniently 
decomposed into contributions b1 and 4s from incident and scattered waves respectively. In terms 
of cylindrical co-ordinates rl  , el ,  and z we may express 4I relative to the centre of cylinder 1 as 

where J ,  is a Bessel function of the first kind. 
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Y 

Figure 1. Co-ordinate systems for two cylinders 

The far-field scattered potential due to cylinder 1 may be written 

gA cosh[k(z+h)] 
(T cosh(kh) n = - m  

4sI(rl,el,Z)=- 1 a,(-i)”H~”(kr1)exp(inel). (3) 

Here a2/g=k tanh(kh) is the dispersion relation and k is the wave number, Hiz )  is a Hankel 
function of the second kind satisfying the radiation condition, and the coefficients a, are to be 
determined from the boundary condition on the cylinder. 

In view of the symmetry about Ox, the scattered potential due to cylinder 2 must be expressible 
in terms of cylindrical co-ordinates r2, O2 and z in the same form as (3): 

Equation (4) can be conveniently transformed into co-ordinates r l ,  tl1 and z using the Graf 
addition theorem for Bessel functions (equation 9.1.79 given by Abramowitz and Stegun16). 
Referring to the geometry of Figure 1, we can write 

Thus equation (4) is transferred into 
gA cosh[k(z+hz)] W 

1 a, 1 (-i)mH~!,(ks)J,(krl)exp(im81). (6)  4S2(r1’e1rZ)=6 cosh(kh) n = - W  m = - W  

This then can be treated as the second scattered potential due to cylinder 1 such that the total 
potential is 4 = 4, + &, + &. 
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The body surface boundary condition at cylinder 1 is 

84 a 
-=O, i.e. -(4,+4sl+4s2)=0 at r l = a .  
ar, ar 1 

(7) 

Substitution of (2) ,  (3) and (6) into (7) yields 
m W 

1 (-i)”J;(ka)exp(inO,)+ 1 a,(-i)”“,2)’(ka)exp(inB1), 
n =  - m  n = - w  

00 W 

+ 1 u, 1 (-i)”H‘,t!,(ks) J&(ka)exp(imB,)=O, (8) 

which holds for all 8, in the range (0,2n). Rearranging this equation and interchanging the order 
of the two convergent summations, we obtain equations for a,: 

n = - m  m = - a  

where n is an integer. Therefore the combined velocity potential 4 = 4, + c$sl + 4s2 expressed in 
co-ordinates r l ,  8, and z is then given by 

g A  cosh[k(z+h)] 
4(r1,81 7 z)=- 1 (-i)”exp(inO,) 

B cosh(kh) n = - w  

) 
W 

x J,(krl)+a,HL2)(krl)+ 2 amH‘,Z!,(ks)Jn(krl) . (10) 

This corresponds to the incident wave plus the total effect of scattering by the two cylinders. With 
the aid of (9) this may be written in the simple form 

( m =  - m  

g A  cosh[k(z+h)] 5 u n ( H i 2 ) ( k r l ) -  H i2)’( ka) J,(krl))exp[i(n8, - n  g ) ] .  40.1, 81, z)=- 
B cosh(kh) , = -m J3ka)  

On the surface of cylinder 1 the expression for 4(u, 8, z )  then becomes 

g A  cosh[k(z+h)] 1 + exp[ i( no1 --: n)] &. 
(T cosh(kh) ,,= - 00 J , ( k a )  +(a ,  0, z)=- 

Equations (1 1) and (12) are the complex form of the linear velocity potential. The real form of this 
potential with the frequency (T is given by 

In the following we shall find the first-order forces. Using Lighthill’s technique,lS the second- 
order drift forces will be obtained from the knowledge of the linear potential @ alone. The 
difficulty in determining these forces lies in the evaluation of the coefficients a,. 
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FIRST-ORDER WAVE FORCES 

The first-order forces on cylinder 1 can be determined from the linearized Bernoulli equation as 

FL1)=r - h  j z x  0 ( - p  g) (acosO)dOdz, 

F y ) =  rx  (- p E) (a sin O)dO dz, 
- h  0 

where Fkl) and F Y )  denote the components of horizontal force along the x and y-directions 
respectively. 

By substituting (13)  into (14) and (15), we readily derive the exact first-order linear forces as 

For an isolated cylinder equation (9 )  reduces to 

from which it is clear that 

and hence 

Therefore we obtain 

Fy'=O, 

where 

F = CM ( p g A  nu ') tanh (kh ) cos (at - B), 

4 c -  - nk 2 a2 J[ J ;2 (ka) + r;2 (ka )] ' 

These results are the same as the previously published results.' 

compared to the first-order force IF/ for a single cylinder as 
We can therefore define the amplification factors due to first-order forces for two cylinders 

Ax = I F k" I/ I f I? (24) 

A y = l q ) I / l f L  (25)  

where If1 = 1 CM(pgAna2)tanh(kh)cos(at-fl)l. These are evaluated numerically in Table I. 

SECOND-ORDER WAVE FORCES 

Referring to the work of Lighthill,' we can determine the second-order drift forces by consider- 
ing (a) the waterline force and (b) the dynamic force. We shall discuss these forces separately. 
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Table I. Numerical results of amplification factors for various parameters; s /a  = 5, h/a = 3 

ka ks kh P x  K 1, 4 
0.50 
0.60 
0.70 
080 
0.90 
1 .00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
200 

2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
600 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 

1000 

1.50 
1.80 
2.10 
2.40 
2.70 
3aO 
3.30 
3.60 
3.90 
4.20 
4.50 
4.80 
5.10 
5.40 
5.70 
6.00 

1,296572 
1,039462 
0.870259 
0.783 540 
0.752349 
0.755871 
0.781834 
0.833345 
0.924884 
1.053781 
1.18 1923 
1.264259 
1.282858 
1.241272 
1.143017 
0.995994 

0.020009 
-0.098980 
-0.1235236 
-0.106307 
- 0.065245 
-0001490 

0.078 732 
0.157476 
0.208889 
0.210658 
0.158663 
006741 1 

- 0.047339 
-0.180359 
- 0.327039 
- 0.452463 

0.965637 
0.939990 
0.9332 1 3 
0945425 
0.970223 
0.997097 
1.0163 13 
1.023968 
1.022195 
1.015537 
1008307 
1004103 
1005507 
1.01 2547 
1.02 16 17 
1.027404 

0.1 10587 
0.129585 
0.136623 
0.14 1666 
0-150065 
0.163 120 
0.1 8045 3 
0.200459 
0,220331 
0.237 17 1 
0.250 1 56 
0.261446 
0.274717 
0.293005 
0.3 16342 
0.337502 

These two forces can easily be obtained from the knowledge of the first-order linear potential 
given by Bernoulli’s equation. The corresponding free surface elevation is given by 

m Hi2”(ka) 
Jb(ka) 

The horizontal components of the waterline forces can be determined from the formulae 

am 2 

2g at r = O  

2 

F t j =  - (-)., =(1 (-a cos 8)d8= 

Ft j  = fn-( 0 29 am at z = o  = a  ( - a  sin @do= -- an2k2 Re( ~ ~ ( 4 2 e 2 i u r + q 5 4 * ) s i n R d e ) .  (28) 

At z=O and rl = a  the expression for 4 is 

4=- 2gA 1 +erp[ -i(nO-(n-l)~)].  
nkaa ,,= - J, (ka)  

It is to be noted here that 
is its complex conjugate. 

may write these in the form 

= Re( 4eiUr), where is a real function, 4 is a complex function and 4* 

By substituting equation (29) and performing integration with respect to 8 in (27) and (28), we 
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Similarly, the horizontal components of the dynamic forces may be obtained from the formulae 

( [ : h  

(V0)'dz ( - a  cos 0)d0, ) 

Performing the indicated integrations in (32) and (33), we may write these as 

2kh an-1 an*+l 
+Re[i 1 m (1- )3(--+-> 

n = - m  sinh(2kh) J ;  J n + l  

2kh al-n a-1 -n )  

)%( sinh(2kh) J ;  J L l P n  

+ ~ -)I e2iat ] 
F$= --[Re{[ P9A 

27trak' 

( 2kh ) a n ( n ( n + l ) a - l - n  n(n-l)a , - ,  
k2aZ J i - , ,  k2a2 J i - , ,  + "sinh(2kh) 

2kh n ( n - l ) a , * - ,  n(n+I)a ,*+1 +( "sinh(2kh)) (kZaZ Jh_,+k2a2 z)]]. 

(33) 

(35) 

Equations (30), (31), (34) and (35) contain the oscillatory and steady state parts of the solution. 
Eatock-Taylor and HungI7 obtained the steady state part of the solution in the form of wave drift 
enhancement effects in multicolumn structures. 

FORCES ON AN ISOLATED CYLINDER 

For a diffracted wave the total horizontal force FI can be obtained from 

where 4I is specified in Reference 11. This function is the sum of linear incident and scattered 
potentials for one cylinder in waves. This expression has been obtained by many researchers, 
including MacCamy and Fuchs.* 

The second-order contributions may be computed by estimating Fd and F,. The dynamic force 
F ,  is given as 
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Invoking the expression for bl and carrying out z-integration of the expression (Vb,)', we 
obtain" 

[cos(m + n)O+ cos(m - n ) q ,  

where the Wronskian property of Bessel functions gives 

in which 

2 
nka 

R, = - [ J:(ka) + Y: (ka)] - ' I 2 ,  

In view of the subsequent &integration described in equation (37), we require only the 
coefficient of cos 8 in the double summation in (38), yielding 

{ E l  -( - 1)" Cf cos(2at) - SI  sin(ht)]}, 
2kh l ( l+ 1) 2kh 

. i n h ( Z k h ) ) + p  (' 'sinh(2kh))l 

where 

and the Bessel function arguments are ka. Integrating with respect to 8, the total dynamic force Fd 
may be expressed as 

F , = q  f [ ( I -  , l ( I +  1) 2kh 
nak f = o  s m i : i k h ) ) + m  (' 'sinh(2kh))l 

x { E l - (  - 1)'[clcos(2at)-Sl sin(2at)l). (47) 
The result (47) is the sum of the steady state and oscillatory parts, which can be written as 

2kh l(Z+ 1) 2kh 
F T = 2 P S A "  nak2 I = o  f [( 1- s i n h ( 2 k h ) ) ' P  (' 'sinh(2kh))l 
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x [C, cos(2at) - S1 sin(2at)], (49) 
such that 

F d = F T + F T .  

The waterline force F, may be calculated from 

F ,  = 1: - P (-)== a41 (- cos O)a d0. 
29 at  

Inserting the expression for 4, into (51), the term in 

( %):=o r = a  

may be written as 

[cos ( m  + n) 0 + cos (m - n) 01. (52) 

In view of the subsequent 0-integration given in (51), we require only the coefficient of cos 0 in the 
double summation in (52), yielding 

where E l ,  C, and S ,  are as previously defined. 
Integrating with respect to 0, the total waterline force F, may be obtained as 

(54) 
4pgA2 co 

zak2 I = o  
F W =-- 1 { E l + ( -  1)'[C, cos(2ot)-~, sin(2ut)l). 

This result may be expressed as the steady state and oscillatory parts as 

F,= FE+ F G ,  (55 )  

where 
4pgA2 

F","-- C El ,  
nak2 l = o  

4pgA2 * 
nak 

F:= -z 1 (- 1)'[C,cos(20t-S1 sin(2ot)I. 

Combining the steady state and oscillatory parts of Fd and F,, we obtain 

(57) 

x [C, cos(2at)- SI sin(2at)I. (59) 
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The drift forces for a single cylinder can then be obtained as 

We know that the drift forces for a pair of cylindefs are 

Therefore the amplification factor for two cylinders as compared to a single cylinder can be 
estimated by using the definitions 

These are computed in Table 1 and compared with A, and ,Iy for a variety of parameter values. We 
also redefine the following dimensionless second-order waterline and dynamic force components 
respectively: 

F,,= F g J / 2 p g A a Z ,  

Fwy=  Flf,)/2pgAa2; 

Fdx = F$:)/2pgAa2, 

FdY=F$) /2pgAa2.  

NUMERICAL RESULTS 

In Figures 2(a) and 2(b) we present the variation in amplification factors defined in equations (63)  
and (64)  as a function of ks for the pair of cylinders shown in Figure 1. We have used s / a =  10 in 
order to validate our results with the approximate calculations of Eatock-Taylor and Hung." 
Our results are qualitatively similar to those of Eatock-Taylor and Hung. Our p, slightly lags the 
estimates they made for p, and our p,, has about the same phase as their py, For ks< 1 we obtain 
a larger p,, than they compute. 

The sensitivity of p x  and p y  to s /a  as a function of ks for kh=30 is shown in Figures 3(a) and 
3(b). Clearly p, and p y  are seen to retain the characteristic oscillatory variation shown in Figures 
2(a) and 2(b). The phases of p, and p,, as well as the asymptotically singular behaviour of p,, for 
small ks are found to be independent of sla for the parameters considered. As sla increases, the 
amplitude of the oscillatory variation of p, and py decreases with respect to ks compared to their 
behaviour when s /a  is small. 

Figures 4(a)-4(c) show the variation in p, and p y  with respect to ka for k s = 3 ,  10 and 50 
respectively when kh = 30 and A / a  = 2. It is interesting that when ks = 3, p x  and p y  achieve extrema 
at ka = 1.50, which corresponds to the two cylinders touching. Whereas p x  varies from a value of 
about 1.0 to a maximum of about 1.5, p,, is almost zero for small ka and monotonically decreases 
to a minimum of about - 1-75. Figure 4(b) shows that these are extrema of the variations in p, 
and p,, with respect to ka when ks= 10. In this case p, is very close to 1.0 for the whole domain of 
ka, with only a slight maximum at about ka=2.0 .  Except for a minimum of about -0.6, p,, is 
almost 0.0 for all ka. Finally, when ks = 50, we present the variation is p, and p,, with respect to ka 
in Figure 4(c). It is evident that p, is almost unity for all values of ka, with only a slight maximum 
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Eatock-Taylor & Hung (1985) 
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-1.0 I I 1 I 
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0 .o 2 .o 4 .O 6.0 8 .O 10.0 

(b) 

ks 

Figure 2. Comparison of amplification factors between the present results and those of Eatock-Taylor and Hung:” 
(a) Lcx, (b) P y  

at about ka = 7.0. Similarly, pLy is almost zero for all values of ka, except for a slight minimum or 
series of local minima at about ka = 12.0. 

When ks is small, as in Figure 4(a), the extrema are most evident, whereas as ks increases, the 
extrema become less evident and occur at larger values of ka. Thus the ratio s/a is approximately 
conserved for the occurrence of these resonances. When ks is quite large, the cylinders are 
essentially isolated, with the result that ,ux is almost unity for all ka and ,uy is almost zero as shown 
in Figure 4(c). The terms “small’ and ‘large’ ks in this context are understood in terms of 
separation distance relative to the incident wavelength. 

In Figures 5(a), 5(b) and 6(a), 6(b) we present the absolute maximum waterline forces in the 
x-dir,ection, F,,,, and in the y-direction, F,,,, as compared to the corresponding components of 
the absolute maximum dynamic forces Fdx, and F,,,. These are given in equations (30), (31), (34) 
and (35) respectively. Interestingly, F,,, is about four times F d x m  in magnitude and both are 
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3.0 

2 .0  

P X  

1 .o 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 

ks 
(8) 

2 .0  

1 .o 

PY 

0.0 

-1  .o 
0 .0  2.0 4.0 6.0 8.0 10.0 12.0 

ks 
(b) 

Figure 3. Amplification factors as a function of ks for k h = 3 0  (a) p x ,  (b) py 

relatively large for small ks. While F,,, is several times F d y m  in magnitude, both are quite small 
compared to the corresponding x-components. Both Fwym and F,,, exhibit singular behaviour as 
ks approaches zero, and Fdym seems to be much larger than Fwym. 

The variations in Fd,, and F,,, with ka for kh = 30 and A/a = 2 are shown in Figures 7(a)-7(c). 
Not only are both components qualitatively similar in their variation with respect to ka, they are 
also similar in magnitude. When ks = 3, both components appear to achieve their maxima at 
ka= 1.5, which corresponds to the situation where the cylinders just touch. Letting ks= 10 in 
Figure 7(b) shows that these force components achieve maximum magnitudes at k a z 2  and that 
these peaks are complicated by an oscillatory behaviour. These maxima correspond to a reson- 
ance in the forcing by the waves. When ks = 50, Fdxm and F,,, achieve maxima at about ka = 7.0 
and monotonically decrease thereafter. The overall result is that as we increase the non- 
dimensional separation distance ks, the maxima of F,,, and Fdxm, corresponding to x-compon- 



DRIFT FORCES ON VERTICAL CYLINDERS 829 

2.0 

1 .o 
* 
1. 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

2.0 

1.5 

* 1.0 
3. 
od 0.5 

X 

3. 0.0 

-0.5 

-1.0 
0.0 1 .o 2.0 3.0 4.0 5.0 

ka 
(b) 

1 
-0.5 I I I 1 I I 
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Figure 4. Amplification factors as a runction of ka for kh  = 3 0  (a) ks= 3.0, (b) ks = 10, (c)  ks = 50 
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0.7 

Fw*m 
0.6 
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(a) 

0.20 1 I 

0.10 I I I I I 1 I 
0.0 1 .o 2.0  3.0 4.0 5.0 6 . 0  
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Figure 5. (a) Absolute maximum waterline force Fwx,  and (b) absolute maximum dynamic force Fdxm as a function of ks 
for ka=0.15, k h = 3 0  and A / a = 2  

ent resonances in these forces, decrease. The maxima migrate to higher ka as ks  increases, 
revealing a tendency (reminiscent of Figures 4(aw(c)) for maxima to occur at specific s/a-values. 

The variation is F d y m  and Fwym shown in Figures 8(a)-8(c) is more complicated. In the 
x-component case when ks= 3.0, Figure 8(a) shows that Fwym and F d y ,  have maxima at about ka, 
when the cylinders touch. Increasing the non-dimensional separation ks reduces these maxima 
and, as seen in Figure 8(b), demonstrates that they are resonance peaks at about ka= 1.5. Local 
maxima at k a = 5 ,  when the cylinders just touch, are also evident. Finally, when the non- 
dimensional separation distance is further increased, as in Figure 8(c) with ks = 50, we obtain 
a family of resonance peaks for Fwym andFdym. In each case the resonance magnitudes are reduced 
from the situation corresponding to smaller ks.  The case when the cylinders just touch is no 
longer able to correspond to a resonance forcing, since the wavelength is now too small. We 
conclude that we need ka < 18 for significant resonance forcing. 



DRIFT FORCES ON VERTICAL CYLINDERS 

0.06 

0 .04  

F W Y I l l  

0.02 

0.00 

831 

r 

9 

- 

- 

I I I 1 

4.0 

3.0 

2.0 

F d y m  
1.0 

0.0 

-1.0 

0.0 1 .o 2.0 3.0 4.0 5.0 6.0 

ks 
(a) 

- 

- 

- 

- 

I I I I I 

The variation in Fd,m and Fdym with kh is shown in Figures 9(a) and 9(b). While both become 
asymptotically quite large for small kh, Fdxm is clearly much larger than Fdym in magnitude. 
Interestingly, for kh > 1.8, Fdxm becomes negative. 

In Figures lO(a)-lO(d) we present the variation in the waterline force components F,, and 
F,, and the dynamic force components Fd, and Fdy in the x- and y-directions as a function of at, 
non-dimensional time, for ks=0.3 and 1.5. In each case the force component has about the same 
periodicity. We find that Fd, and F,, experience peaks and troughs at about the same values of at 
as do Fdy and F,,,,. Qualitatively Fdx and F,, have a similar variation with respect to at, but in 
magnitude F,, is about five times Fdx. Both F,, and F d y  are about zero when k s =  1.5 with respect 
to variation in at. Moreover, Fdy is about seven times F,, in magnitude. While F,, and Fdy are in 
phase, they are about one-sixth of a cycle out of phase with respect to F,, and Fdx. 
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Figure 7. Absolute maximum waterline force Fwxm and absolute maximum dynamic force Fdxm as a function of ka for 
kh = 30 and Ala = 2: (a) ks = 3.0, (b) ks = 10, (c) ks = 50 
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Figure 8. Absolute maximum waterline force FWym and absolute maximum dynamic force F,,,, as a function of ka for 
kh = 30 and A/a = 2 (a) ks = 3.0, (b) ks = 10, (c) ks = 50 
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Figure 9. Absolute maximum dynamic forces (a) F,,, and (b) Fdy, as a function of kh for ka = 0.1 5, ks = 1.5 and A/a  = 2 

CONCLUDING REMARKS 

We have calculated the components of second-order drift forces for a pair of circular cylinders 
standing upright in finite depth water. Thus we have considered force components as functions of 
non-dimensional separation distance ks, non-dimensional radius ka and the ratio s/a, where s is 
the separation distance between the cylinders, a is the cylinder radius and k is the incident wave 
number. The resonances that are evident in our computations as a function of these variables ks, 
ka and s/a are the important results that we report. 

The amplification factors fix and py for the force components due to the presence of two 
cylinders compared to one cylinder, as a function of ks for different s/a-values, have oscillatory 
variations. While py is normally smaller than f ix over the domain of ks for which it was computed, 
py is divergent as ks approaches zero. As functions of ka for given ks-values, px and py show 
distinctive resonances. When ks= 10, these extrema become absolute over the domain of ka and 
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occur at about ka= 1.5. When ks= 50, corresponding to a large separation distance, the extrema 
are still present and they exhibit smaller magnitudes than when ks is smaller in Figures 4(a) and 
4(b). With increasing ks the resonances in px and py migrate to higher ka, suggesting a tendency 
for s/a to remain constant for resonance to occur. During resonance, px is somewhat greater than 
unity whereas py becomes negative, implying an attractive force relative to the one-cylinder 
situation. 

For given ka-values the y-components of the dynamic and waterline forces, Fdy and Fwy, are 
almost zero with respect to variation in ks relative to the x-components F,, and Fwx. All are 
divergent for small ks. As a function of ka for given ks-values, all components are similar in 
magnitude and, as seen in Figures 7(a)-7(c) and 8(a)-8(c), exhibit resonances. Analogously to p,., 
F,, and F,, experience a single extrenum which diminishes as ks assumes larger values. As ks 
increases, the resonances migrates to higher ka, implying a tendency for s/a to remain fixed. 
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Figure 10. Total waterline forces (a) Fw, and (b) Fw, and total dynamic forces (c) Fdx  and (d) Fdy as a function of ut for 
ka=0.15, kh=30 and Ala=2  
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Figure 10. (Continued) 

Multiple resonances are experienced by Fdy and F,,, which also diminish in magnitude and move 
to higher ka-values as ks increases. With increasing ks,  more ‘subharmonics’ of the initial 
resonance seen in Figures 8(a) and 8(b) become resonant, corresponding to the ‘noisy’ behaviour 
of p, in Figure 4(c). 

Finally, both waterline and dynamic forces F, and Fd are oscillatory in all their x- and 
y-components with respect to non-dimensional time ot. The x-component of F, is several times 
the x-component of Fdr whereas the y-component of Fd is several times the y-component of F,. In 
phase F,, and Fdx  agree and are offset relative to F,, and Fay, which also agree. Because of the 
unavailability of experimental data, the results presented in this paper cannot be compared for 
their correctness. However, a comparison with the preliminary results of Eatock-Taylor and 
Hung” shows fair agreement. 
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APPENDIX: NOMENCLATURE 

radius of cylinder 
wave amplitude 
Morison coefficient 
linear force due to a single cylinder 
second-order waterline force due to a single cylinder 
second-order dynamic force due to a single cylinder 
sum of forces FY and FY for a single cylinder 
second-order steady state force components in the x- and y-directions for a pair of 
cylinders 
first-order forces in the x- and y-directions for two cylinders 
first-order force for a single cylinder 
x- and y-components of second-order waterline forces (two cylinders) 
x- and y-components of second-order dynamic forces (two cylinders) 
steady state waterline and dynamic forces due to one cylinder 
oscillatory waterline and dynamic forces due to one cylinder 
total steady state (drift) forces due to waterline and dynamic forces (one cylinder) 
total oscillatory forces due to waterline and dynamic forces (one cylinder) 
acceleration due to gravity 
wave height 
Hankel function of second kind of order n 
water depth 
Bessel function of first kind of order n 
wave number 
wavelength, 2zfk 
unit outward normal 
centre of cylinder 1 
centre of cylinder 2 
dynamic pressure 
velocity vector 
polar co-ordinates with respect to cylinder 1 
polar co-ordinates with respect to cylinder 2 
distance between centres of two cylinders 
spacing parameter 
diffraction parameter 
time 
wave period 
x-co-ordinate in horizontal plane 
y-co-ordinate in horizontal plane 
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Z 

V 

rl 
B 

z-co-ordinate vertically upwards 
Laplacian operator 
phase angle 
wave elevation 
x-component first-order amplification factor 
y-component first-order amplification factor 
x-component second-order amplification factor 
y-component second-order amplification factor 
density of water 
velocity potential (real) 
incident wave potential (real) 
scattered wave potential (real) 
incident wave potential (complex) 
scattered wave potential (complex) 
scattered potential due to cylinder 1 (complex) 
scattered potential due to cylinder 2 (complex) 
velocity potential for a single cylinder similar to @ 
incident wave frequency, 2nlT 
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